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Predicting Controller Capacity in Supervisory
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Abstract—In the future vision of allowing a single operator
to remotely control multiple unmanned vehicles, it is not well
understood what cognitive constraints limit the number of vehicles
and related tasks that a single operator can manage. This paper
illustrates that, when predicting the number of unmanned aerial
vehicles (UAVs) that a single operator can control, it is important
to model the sources of wait times (WTs) caused by human–vehicle
interaction, particularly since these times could potentially lead to
a system failure. Specifically, these sources of vehicle WTs include
cognitive reorientation and interaction WT (WTI), queues for
multiple-vehicle interactions, and loss of situation awareness (SA)
WTs. When WTs were included, predictions using a multiple
homogeneous and independent UAV simulation dropped by up
to 67%, with a loss of SA as the primary source of WT delays.
Moreover, this paper demonstrated that even in a highly auto-
mated management-by-exception system, which should alleviate
queuing and WTIs, operator capacity is still affected by the
SA WT, causing a 36% decrease over the capacity model with no
WT included.

Index Terms—Fan-out (FO), multiple unmanned vehicles,
operator capacity, supervisory control.

I. INTRODUCTION

W ITH the recognition that intelligent autonomy could
allow a single operator to control multiple vehicles (in-

cluding air, ground, and water), instead of the converse which
is true today, there is an increasing interest in predicting the
maximum numbers of autonomous vehicles that an operator can
control. Indeed, the Office of the Secretary Defense’s Roadmap
for unmanned aircraft systems specifically calls for such future
architectures [1]. Because of the increased number of sensors,
the volume of information, and the operational demands that
will naturally occur in a multiple-vehicle control environment,
excessive cognitive demands will likely be placed on opera-
tors. As a result, efficiently allocating attention between a set
of dynamic tasks will be critical to both human and system
performance. To this end, this paper will discuss recent efforts
to model human capacity for the management of multiple
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unmanned/uninhabited aerial vehicles (UAVs), outline an ex-
tension to a previous operator capacity model, and demonstrate,
using experimental evidence, how the upper bound predictions
can significantly change with the new model.

II. BACKGROUND

While a number of research efforts have experimentally
demonstrated in simulations that, under various levels of auton-
omy, operators can control anywhere from 1 to 12 unmanned
air vehicles [2]–[4] and one to eight ground vehicles [5], [6],
there has been very little research in developing a model for
predicting controller capacity. In terms of operator intervention,
control can range from manual control (e.g., actually flying
the UAV) to supervisory control (higher level planning and
goal state changes). Operators that are engaged in manual
control will necessarily be able to control fewer vehicles than in
supervisory control since manual control requires significantly
higher levels of dedicated attention to lower level skill-based
cognitive activities, with fewer resources available for higher
level planning tasks. Indeed, the tasks and their required at-
tentional resources of each vehicle will likely limit the human
capacity as well as the number of vehicles.

In one of the few attempts to theoretically predict an up-
per bound for an operator controlling multiple independent
homogeneous unmanned vehicles, it has been proposed that
the number of ground robots that a single individual could
control can be represented by (1) [7]–[10]. In this equation,
fan-out (FO) is equal to the number of robots that a human can
effectively control, neglect time (NT) is the expected amount of
time that a robot can be ignored before its performance drops
below some predetermined threshold, and interaction time (IT)
is the time it takes for a human to interact with the robot to
raise the performance to an acceptable level. Thus, the total
capacity is the summation of all NT and IT divided by the
IT. While originally intended for ground-based robots, this
paper has direct relevance to other unmanned systems in the
air or on/under the water, as these systems are becoming more
autonomous and will move from the manual control domain
to that of multiple-vehicle supervisory control. Because these
vehicles are assumed to be homogenous, the assumption is that
the operators are responsible for a homogeneous set of tasks

FO =
NT + IT

IT
=

NT
IT

+ 1. (1)

The ratio of operator IT to an overall mission time, like NT,
is similar to another metric known as the utilization (UT) or
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Fig. 1. Relationship between IT, NT, and WTs.

percent busy time. UT is the ratio of time that an operator is
actively engaged in a task (including the three major elements
of information processing: perception, cognition, and action)
to the overall operating time of a system. Several studies have
demonstrated that UT is a metric that can be used to evalu-
ate human–automation interaction and that operators working
beyond 70% utilization experience significantly degraded per-
formance [2], [11], [12]. However, UT is a gross measure of
human–automation IT in that it does not discriminate among
the different kinds of IT (which will be discussed below).

Equation (1) is an improvement over the more general UT
metric in that it specifically compares NT and IT and is a
useful measure to establish an ideal upper bound for operators.
However, it suffers from the same limitations as UT in that it
does not capture the different components of IT. Furthermore,
we propose that there remains an additional critical variable that
must be considered when modeling human control of multiple
vehicles, regardless of whether they are on the ground or in
the air, and that is the concept of wait time (WT). In complex
problem-solving tasks, humans are serial processors in that
they can only solve a single complex problem or task at a
time [13], and while they can rapidly switch between tasks,
any sequence of tasks requiring complex cognition will form
a queue, and consequently, WTs for these tasks will be built.
In the context of a system of multiple vehicles in which two or
more vehicles will likely require attention simultaneously from
a human operator, WTs are significant in that as they increase,
the actual number of vehicles that can be effectively controlled
decreases. Moreover, while task and human–computer interface
dependently, if humans are cognitively saturated or have a low
situation awareness (SA), they may not realize that a particular
vehicle is in need of attention, thus inducing another WT until
the task is recognized.

Fig. 1 shows the relationships between IT, NT, and WT
in terms of overall multiple-vehicle system performance. The
role of the operator, in general, is to ensure that all vehicles
operate at some predetermined minimally acceptable level of
performance. Because of the intermittent supervisory control
aspect of multiple-vehicle control, operators will only attend
to those vehicles in need (IT) to bring them to this acceptable
performance level and, hence, the increase in performance

during IT in Fig. 1. During NT periods, the vehicles operate
without the need for operator intervention until such time that
the performance drops below the threshold. Point A in Fig. 1
represents a discrete event that terminates NT, which causes
the vehicle to require operator assistance such as a system
failure (e.g., an engine loss or loss of a sensor). However, the
termination of an NT state is not necessarily caused by singular
discrete events. Point B represents performance degradation
during NT, which causes the vehicle performance to eventually
drop below the performance threshold, e.g., a slow degradation
of an inertial navigation system. In both NT cases, once the
performance has dropped below an acceptable level, the vehicle
must wait until the human recognizes the problem, solves the
problem internally, and then communicates that goal to bring
the vehicle to an acceptable state so that it can move into an
NT state. As shown in Fig. 1 at point C, if the problem is not
addressed immediately, the vehicle must wait and operate at
some nonoptimal performance level. As will be discussed in
depth in the next section, this delay can be caused by either
a loss of operator SA (the operator does not recognize that the
vehicle is in a degraded state) or the operator is overloaded with
more critical tasks from other vehicles. Moreover, since opera-
tors cannot generally and instantly bring the performance above
the threshold, there is an additional interaction WT (WTI)
while the operator is actively attending to a vehicle (e.g.,
commanding it back to the correct course) to achieve the desired
performance level.

IT and NT are important in predicting operator capacities
for handling multiple vehicles, particularly for those domains
that are time-critical and have high risk, like UAVs, as WT
could become a critical point for possible system failure.
Even for unmanned underwater vehicles that must surface for
communications, waiting is not only suboptimal but also can
be extremely hazardous. Moreover, ground-based robots (or
unmanned ground vehicles) engage in time-critical missions,
such as search and rescue, which would be negatively impacted
if the problem of WT was not addressed. While most robots and
vehicles can be preprogrammed to follow some predetermined
contingency plan if they do not receive the required attention,
mission success will likely be significantly degraded if WTs
grow unexpectedly.

A. WTs

As outlined previously, from a robot or vehicle perspective,
WT imposed by human interaction (or lack thereof) can be
decomposed into three basic components: 1) WT in the human
decision-making queue (WTQ); 2) WTI, and 3) WT due to
loss of situation awareness (WTSA). For example, suppose that
an operator is controlling two robots on a semiautonomous
navigation task (much like the Mars Rovers). While typical
operations involve human interaction with a single vehicle,
there will be times when both vehicles require attention near-
simultaneously. When this occurs, once the human operator
begins assisting the first robot, the second robot must wait while
the operator solves the problem and then issues the commands
to it (WTI1). For the second robot, the time it waits in the queue
(WTQ2) is effectively WTI1.
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IT is the time during which a human’s attention is focused
on a single vehicle in order to solve a problem or induce
some change to improve the performance above a specified
threshold. From the human perspective, IT includes the time
required to determine the nature of the problem, to solve
the problem, and to communicate that solution with some
type of feedback. Thus, the vehicle must wait some period
of time during the “interaction” due to the human decision-
making process. In teleoperation, where the human is directly
controlling the robot’s movements and positions, WTIs might
be very small and occur in rapid succession as the controller
gets the sensor feedback and adjusts commands accordingly.
However, in other supervisory control scenarios that require
minimal manual control but significant cognitive input, such as
the need to provide a new mission to a UAV, WTI can be quite
large depending on the complexity of the problem.

WTSA is perhaps the most difficult WT component to model
because it represents how cognitively engaged an operator is in
a task. SA is generally defined as having three levels, which are
as follows: 1) the perception of the elements in the environment;
2) the comprehension of the current situation; and 3) the
projection of future status [14], [15]. While SA can decrease
under a high workload due to the competition for attentional
resources [16], it can also decrease under a low workload due to
boredom and complacency [17]. If an operator does not realize
that a vehicle needs attention (and, thus, experiences a loss of
SA), the time from the initial onset of the event to the actual
operator recognition of the problem could range from seconds
to minutes.

Equation (2) categorizes general WT that is not part of
human–robot interaction as the summation of WTs that result
from queues due to the near-simultaneous arrival of problems
plus the WTs due to the operator loss of SA

WT =
X∑

i=1

WTQi +
Y∑

j=1

WTSAj (2)

FO =
NT

IT(WTI) + WT
+ 1 (3)

where
WT wait time;
WTQ queuing WT;
WTSA WT caused by a loss of situation awareness;
WTI WT due to human decision making nested in over-

all IT;
X number of human–automation interaction queues

that build;
Y number of time periods in which a loss of SA

causes WT.
Equation (3) demonstrates how the FO equation would change
as a result of the inclusion of WTs. For the remaining discussion
in this paper, WTI will be considered to be subsumed in IT,
which includes the time needed for the human to make deci-
sions about a new vehicle problem and then to communicate
the solution to the vehicle.

While not explicitly linked to IT, WT as a function of WTSA
and WTQ occurs in the denominator of (3) because it represents

the time that should have been spent in the interaction task,
which is due to a degraded vehicle state but not due to human
attention inefficiency (either a loss of SA or an inefficient
sequencing of tasks in a queue). Thus, WTs occur only after a
vehicle has moved from the NT period to an IT period but must
wait until the operator attends to it to achieve a performance
increase. WTs, in effect, increase the overall IT.

The original FO (1) represents a theoretically perfect system
with an instantaneous system response, as well as humans who
induce no system delays. The modified FO in (3) represents
a more conservative upper bound which accounts for ineffi-
ciencies in human attention allocation (WTSA), limits on the
human ability to attend to multiple complex tasks simulta-
neously (WTQ), as well as the inherent delay that will always
accompany the human information processing loop of percep-
tion, cognition, and action that occur in every decision-making
process (WTI). It should be noted that the modified FO (3)
is not intended to make an accurate prediction of exactly how
many vehicles a person could control but merely to set an upper
limit given human and system limitations.

B. Levels of Automation

One of the primary variables that will influence the oper-
ator capacity in the supervision of multiple vehicles is the
level of system autonomy. The challenge in achieving the
one-controlling-many goal for the management of multiple
unmanned vehicles in the future is to determine how automa-
tion can be used to reduce human workload. Higher levels of
system autonomy will increase NT, which should decrease IT
and the associated WTs. In terms of aiding the operator in
complex decisions, automation decision support can range from
fully automatic, where the operator is completely left out of
the decision process, to minimal levels where the automation
offers basic data filtering or recommendations for the human
to consider [18]. For rigid tasks that require no flexibility in
decision making and have a low probability of system failure,
higher levels of automation (LOAs) often provide the best
solution in terms of operator workload [19]. However, even
partially automated systems can result in measurable costs
in human performance, such as loss of situational awareness,
complacency, skill degradation, and decision biases [20].

In the context of managing multiple vehicles, increasing the
LOAs should reduce the workload and WTs by effectively
reducing IT, but there are several measurable costs for both
operators and the system in general. The loss of SA and the
propensity for automation bias are significant problems that
can result when automation authority increases. For example,
at high LOAs where the system takes over the execution of
some or all functions, overall WTs are expected to decrease as
automation can generally make faster decisions than humans,
and the number of opportunities for lower level human errors
should be reduced. Superficially, it seems that the system
should perform well at higher LOAs, but under abnormal and
unexpected conditions, automation could fail, possibly causing
a catastrophic event to occur. This is particularly problem-
atic under uncertain or novel conditions because the human
operator may not understand the situation well enough to
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Fig. 2. MAUVE interface.

determine if the automation is working correctly and if it
requires intervention.

III. MAUVE: THE EXPERIMENTAL TEST BED

In order to study how the increasing autonomy influences
the proposed different components of WT in the multiple
unmanned vehicle control domain, a dual-screen simulation
test bed, which is named the Multi-Aerial Unmanned Vehicle
Experiment (MAUVE) interface, was developed (Fig. 2). This
interface allows an operator to supervise four homogeneous and
independent UAVs simultaneously and to intervene as the situ-
ation requires. In this simulation, operators are responsible for
supervising four UAVs that are tasked to destroy a set of time-
sensitive targets in a suppression of enemy air defenses mission.
Because the simulated UAVs are highly autonomous, they only
require operators to provide high-level mission planning and
execution actions as inputs to the UAVs. The UAVs launch
with a predetermined mission plan; therefore, initial target
assignments and routes are already completed. The operator’s
job is to monitor each UAV’s progress, to replan aspects of the
mission in reaction to unexpected events, and, in some cases,
to manually execute mission critical actions such as arming and
firing of payloads.

MAUVE UAVs are capable of six high-level actions: trav-
eling enroute to targets, loitering at specific locations, arming
payloads, firing payloads, performing battle damage assessment
(BDA), and returning to base, generally in this order. BDA is
the postfiring phase of combat where it is determined whether
the weapon(s) hit the target and if the desired effect was
achieved. In MAUVE, BDA is semiautomated in the sense that
operators are responsible for scheduling BDA in advance, but
the UAV performs it automatically after firing, if scheduled.

A. Navigation Display

The left-hand side of the MAUVE interface in Fig. 2 is
known as the navigation display, and it consists of a map display

and a mission planning and execution panel. Both the elapsed
time and the time remaining in absolute and relative terms are
shown on the top right of the map display. The map display rep-
resents a 2-D spatial layout of the battle space, which is updated
in real time. Threat or hazard areas, which are circular in shape,
have a striped yellow pattern and can be dynamic throughout
scenarios, changing in size and locations, disappearing entirely,
or emerging as time progresses.

The UAVs, which are always held constant at four, indepen-
dently change colors according to their current action which
includes arm payload, fire payload, move to next target, and
return to base. Arming and firing are only enabled if the pre-
established rules of engagement (RoE) of the simulation are
met. For arming, the UAV must be directly on top of a target
within predetermined arming or firing windows. For firing, the
UAV should be armed at the correct target. The move-to-next-
target button allows operators to bring UAVs out of the loiter
patterns in case of scheduling problems, and the return-to-base
button causes all future targets, waypoints, and loiter points
to be deleted from the mission plan. Subsequently, a straight-
line path is planned directly back to base and is intended for
emergency scenarios.

Targets are designated by a diamond-shaped icon and are
assigned a priority of high (H), medium (M), or low (L). Active
targets are differentiated from the inactive targets by their
color, which is either red or gray on the display, respectively.
Waypoints, which are shown on the map display with black
triangle icons, represent UAV turning points. In addition, UAVs
can be loitered at specific points, and typically, a UAV loiters
for a user-specified amount of time before moving. However,
the departure from a loiter pattern must be commanded by
the operator. UAV routes can be changed in minor ways by
selecting a particular waypoint or loiter point and by dragging it
to the desired location. More significant routing changes, such
as the addition or removal of waypoints, loiter points, or targets,
can be accomplished using the mission planning and execution
panel. Routing changes are typically only required as a result of
unexpected scenarios and represent real-time replanning.
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Operators are provided with a “request time-on-target (TOT)
delay” button which gives them limited opportunities to ma-
nipulate the TOTs for those targets assigned. Operators can
request a TOT delay for a given target for two reasons:
1) According to the current mission plan, they are predicted to
arrive late to a target and, therefore, will miss their deadline;
or 2) for workload purposes, i.e., if operators feel that they
need to spread out a very high workload time block to manage
the UAVs more effectively. However, this function should be
used with care because moving back one target’s deadline likely
changes the UAV’s arrival time at all subsequent targets. It is
important to highlight this change of TOT as a request, not
a command, and the operators’ requests can be approved or
denied. In MAUVE, the probability of approval is a function
of how far, in advance of the deadline, the request is sent, as
would likely be the case in true military situations. When a TOT
deadline is immediately approaching, the chance of approval is
zero but nearly 1.0 when requested 15 min in advance, which is
the limit for the decision support—to be discussed in the next
section. In MAUVE, a request always takes 5 s for response,
and during this intervening time, no other TOT requests can
be made.

B. Decision Support Display

The right-hand side of the MAUVE simulation in Fig. 2
provides decision support for task management, and it consists
of a UAV status window, chat box, UAV health and status
updates, and the decision support window. The status window
at the top left of the decision support display gives operators
a low-level detailed information for each UAV, such as current
target, current action being performed, latitude and longitude,
course, and weapons information. Speed and altitude are also
shown, although they are not directly controllable by operators.

The bottom left of the decision support display has a text-
based datalink communication tool known as a chat box that
contains a time history of all human communication inter-
actions. The chat box window displays various notification
messages that appear in response to scenario events or actions
taken by users, as well as periodic task-relevant questions for
operators to answer from a simulated superior officer. One mes-
sage that is particularly important to operators is a notification
that a TOT request is accepted or denied. The bottom right of
the decision support display contains a UAV health and status
notification window which separates human communications in
the simulation from system communications and only contains
messages from individual UAVs.

The manipulation of the appearance and functionality of the
actual task management decision support (the timeline block)
is the primary independent variable for the experiment that will
be discussed in the subsequent section. The basic premise of the
decision support is to simplify standard air tasking order (ATO)
data and to combine them in a single interface with an up-to-
date mission planning information. An ATO provides a sched-
ule of events for a mission as well as the required resources. The
information contained in an ATO includes which aircraft has
been assigned to certain strikes, times on targets, waypoints,
and call signs that are to be used on those missions. Since

Fig. 3. Increasing levels of mission autonomy. (a) Manual. (b) Passive.
(c) Active. (d) Superactive.

the focus of this paper was to determine how the increasing
automation would affect WTs, four versions of ATO decision
support were created in MAUVE: termed manual, passive,
active, and superactive, respectively. These will be described
in detail below.

The manual LOA level of the decision support [Fig. 3(a)]
presents all the required ATO and mission planning information
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in a text-based table format. Current TOT windows and esti-
mated times of arrivals (ETAs) for up to the next four targets in a
UAV’s timeline are presented. The next waypoint or navigation
point on the current route segment is provided, as well as the
final ETA for arrival at base in the last column. A low level
of automated assistance is provided to the user through the
“Next Expected Action” column, which tells the user what they
should be doing next and at what time, according to the ATO.
This information is updated dynamically to reflect the changing
ATO requirements and mission planning changes initiated by
the user.

The passive LOA [Fig. 3(b)] assimilates all of the ATO and
current mission information contained in the manual level and
transforms it into a horizontal timeline format, which is color
coded by action. The major difference between the passive
and the manual levels is the entire schedule integration for
users using a graphical format versus a text-based format. The
visual timelines are relative, with the left side representing the
predicted UAV actions in the near future and the right side up
to 15 min into the future. Target ETAs are represented by black
rectangles on the bottom of each timeline, and waypoint, loiter
point, and base arrival times are marked by black triangles on
the top of each timeline. The TOT windows, arming windows,
and BDA periods are represented by red, yellow, and brown
blocks of time.

All of the information in the graphical timeline is available
under manual automation, but it cannot be obtained without a
substantial cross-checking of table entries. Moreover, the man-
ual table format does not facilitate schedule comparisons across
different vehicles. With this visual representation, recogniz-
ing problems with the current schedule is perceptually based,
which allows users to visually compare the relative location
of display elements instead of specific times to one another.
This level of decision support is termed passive because the
automation is not performing any tasks except transforming the
basic ATO and mission planning information into a graphical
format.

The active LOA [Fig. 3(c)] uses the same horizontal timeline
format as the passive automation level but provides additional
help from the computer. In the active version, an algorithm
searches for periods of time predicted to cause high work-
load for the operator, and then directs the operator’s attention
towards them. The computer identifies a high workload area
or “bottleneck” as a period of time during which multiple
UAVs are scheduled to simultaneously execute mission critical
actions that require human interaction, including arming, firing,
or performing BDA. The automation draws attention to these
areas of concern by a reverse-shading technique, in which the
“bottlenecks” are highlighted while the rest of the timeline’s
colors are muted but still visible. As no information is hidden,
but only made less salient, the operator’s attention can be di-
rected to the appropriate areas of the schedule while allowing
him to maintain SA for the overall mission.

In addition to identifying areas of high workload, the com-
puter also recommends a course of action to alleviate the high
workload areas, such as moving a particular TOT. Computer
recommendations appear in gray boxes to the right of each
relevant UAV’s timeline, and subjects have several options:

1) they can acknowledge a high workload area but take no
action; 2) they can follow the recommendation to relieve the
projected high workload area by shifting a TOT; or 3) they can
make other mission planning changes to ensure that the high
workload area does not occur, such as deleting a target from a
UAV’s plan. While the automation makes locally optimal rec-
ommendations, the algorithm is not globally optimal. Following
the computer’s recommendation to relieve a high workload area
removes that particular schedule conflict but sometimes creates
another in the process.

The reverse-shading technique, in conjunction with the rec-
ommendations, permits operators to make local changes to
alleviate workload and to immediately see the effect on the
global plans of all the UAVs. The purpose of the active LOA is
to help operators identify future time periods of potential high
workload further in advance so that they can avoid them or at
least be better prepared to handle them. This level of decision
support is termed active because the automation actively aids
operators by narrowing down a set of possible solution alterna-
tives for high workload problems.

The superactive LOA [Fig. 3(d)] also builds upon the
passive-level visual timeline, but instead of making recommen-
dations to the operator, as in the active LOA, a management-
by-exception (MBE) approach is taken. MBE occurs when
automation notifies a human that he is going to take some action
and gives the operator a limited time to veto the automation.
In this experiment, MBE occurs in the superactive condition
when the computer automatically executes the arming and
firing actions for all UAVs at each target when the RoE are
met. Operators are given 30 s to intervene with the automation.
For example, in order to fire, a UAV has to be located at the
particular target it was due to fire on, already armed, and within
the TOT window for that target. While the automation handles
the actual execution of tasks, the operator is still responsible for
determining if the arming and firing actions are appropriate, as
well as replanning actions and manipulating routes to ensure
that the UAVs arrive at the correct targets on time. For the
30 s prior to every arming and firing action, exception boxes
appear to the right of the timeline, which allow the operator to
veto these actions. The color of the box indicates which action
the UAV is preparing to perform, red for firing and yellow for
arming.

IV. EXPERIMENTAL VALIDATION

Fig. 4 shows our hypotheses in terms of how WTs would be
influenced by the MAUVE’s different LOAs. Because increas-
ing LOAs should theoretically reduce the operators’ workload,
we proposed that WTI would be progressively lower for the in-
creasing levels. As previously discussed, WTQ depends heavily
on WTI, which is expected to decrease with increasing LOAs in
MAUVE. Therefore, WTQ should follow the same decreasing
trend as LOA increases.

For WTSA, the highest LOA (superactive) should theoreti-
cally eliminate any WTSA but only for expected events. When
the unexpected events occur, operators may have low SA due
to complacency, and therefore, they may incur WTSA by not
noticing that the mission plan needs adjustment or that a UAV
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Fig. 4. Experimental hypotheses.

needs attention. In contrast, given the lack of decision support,
the manual level should produce the largest total amount of
WTSAs of all LOAs. We hypothesized that the active and
passive levels should have the lowest accumulated WTSA
because operators are continually interacting with the vehicles
and are thus “in-the-loop” as opposed to “on-the-loop” for
those operators with a superactive control. The hypotheses in
Fig. 4 are ranked on an ordinal scale both to normalize the
variables and because no prior evidence exists to formulate
more quantitative hypotheses. In order to validate these hy-
potheses, an experiment with the MAUVE simulation interface
was conducted, which will be described next.

A. Apparatus, Participants, and Procedures

Training and testing were conducted on a four-screen system
called the multimodal workstation [21]. A total of 12 subjects
took part in this experiment, ten men and two women. Subjects
were recruited based on whether they had UAV experience,
military and/or pilot. The subject population consisted of under-
graduates and graduate students, as well as those from the local
reserve officer training corps (ROTC) and active duty military
personnel. All were paid $10/h. In addition, a $50 incentive
prize was offered for the best performance. The age range of
participants was 20–42 years with an average age of 26.3 years.
Nine participants were members of the ROTC or active duty
officers. While no subjects had operational UAV experience,
nine participants had piloting experience. The average number
of flight hours among this group was 120.

Subjects had two main objectives in this experiment: 1) to
guide each UAV so that together, all UAVs properly executed
the required missions, which changed over time; and 2) to an-
swer periodic questions about the situation from commanders,
which was a secondary task. All subjects received between

90 and 120 min of training which culminated in a 15-min
training scenario that is similar to, but easier in difficulty
than, the testing sessions. Subjects were required to achieve a
predetermined minimum level of performance in this scenario,
making no more than two replanning or targeting mistakes, to
move onto the actual test sessions.

Following the training, participants tested on two consecutive
30-min sessions, which represented low and high workload
scenarios. These were randomized and counterbalanced to pre-
vent a possible learning effect. The low replanning condition
contained seven replanning events, whereas the high replanning
condition contained 13 replanning events. These numbers were
based on objective and subjective feedbacks gained through
pilot testing. Each simulation was run several times faster than
real time so that an entire strike could take place over 30 min
(instead of several hours as is commonplace in actual strikes).

B. Experimental Design

The primary independent variable of interest in this experi-
ment was the level of decision support (Fig. 3). A secondary-
factor level of replanning was included to simulate the low
and high workload scenarios. The level of decision support
was between subjects, and the level of replanning was within
subjects. The statistical model used for the majority of the
analyses was a 2 × 4(3) repeated measure linear mixed model.
Three subjects were nested within each automation level, and
both independent factors were fixed while subjects represented
a random factor. Age was used as a covariate in all analyses
and for all reported results α = 0.05 unless stated otherwise.
The dependent variables were the different components of WT
(WTI, WTQ, and WTSA) and, as will be described in more
detail next, were captured through mouse clicks and data file
time stamps of screen objects.

V. RESULTS

A. WTI

In this experiment, WTI was recorded from the time
an operator selected a degraded UAV to the time a so-
lution was communicated to the UAV (mean = 81.5 s;
SD (standard deviation) = 57.6 s). WTI was significant for
LOA (F (3, 13) = 8.08; p = 0.003) and not significant for
the level of replanning (F (1, 12.1) = 2.13; p = 0.170). From
posthoc analyses, two homogeneous subsets of automation lev-
els were found, superactive/active and passive/manual, which
means that the superactive and active LOAs produced statis-
tically the same WTs, so did the passive and manual. Fig. 5
shows how these results were compared to predictions, which
were generally in line with expectations. It is worth noting for
these and the remaining results that the relatively low subject
number limits the generalizability of these results.

B. WTQ

WT spent in the queue was recorded whenever two or more
vehicles required operator attention simultaneously, and the
operator moved immediately to the vehicle(s) waiting in the



458 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 2, MARCH 2008

Fig. 5. WTIs results.

Fig. 6. WT in the queue results.

queue after finishing a task with another vehicle (mean =
35.0 s; SD = 43.4 s). Fig. 6 shows the results being compared
with the predictions. The amount of WT spent in the queue
was significant for the level of replanning (F (1, 12.3) = 18.08;
p = 0.001) and marginally significant for LOA (F (3, 13.2) =
3.10; p = 0.063). The unusual spike in WTQ for the active
LOA under high replanning in Fig. 6 warranted further investi-
gation which showed that for the high replanning condition, the
active level had significantly more WTQ than both the super-
active and passive levels (A (active) versus SA (superactive),
p = 0.009; A versus P (passive), p = 0.074). In addition, those

Fig. 7. WTSA results.

subjects with an active decision support experienced an equal
amount of WTQ as those with the manual level.

C. WTSA

WTSA was recorded when at least one vehicle required
attention, but the operator did not realize it (mean = 263.7 s;
SD = 239.7 s). This time interval was marked by operator
inactivity, i.e., if a problem was present, and the operator
did not attend to it and was not engaged in any other task.
Common situations, where WTSA was incurred, included when
subjects forgot to arm and fire on a target and left a UAV
loitering unnecessarily or when a subject flew a UAV into a
threat area without attempting to redirect it to a safe area.
WTSA was significant for the level of replanning (F (1, 12.3) =
18.70; p = 0.001) but not for LOA (F (3, 13.2) = 2.14;
p = 0.144). However, as shown in Fig. 7, there was a significant
difference in cell means under the high replanning condi-
tion between the active and superactive levels (p = 0.046).
Interestingly, under manual automation, there was no signifi-
cant difference in WTSA between the high and low replanning
conditions.

VI. DISCUSSION

In general, there was a decreasing trend of WTI with increas-
ing LOAs, which was reasonably consistent with expectations
(Fig. 5). Similarly, the WTQ results approximately followed
the predicted trend of decreasing WTQ with an increasing
automation level, except for the relatively high-average WTQ
for active automation (Fig. 6). A quantitative analysis of WTQ
accumulation in the active high replanning test sessions showed
that the majority were accumulated in several large queues that
formed late in the scenarios when multiple difficult replans
were required from the operator.
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Fig. 8. WT proportions.

Fig. 9. Operator capacity predictions. Original FO (1) versus revised FO (3)
including WTs.

Further investigation of the anomalous WTQ active condition
demonstrated that this problem can be attributed to the subjects’
inappropriate use of the “Request TOT change” function. It
appeared that for those operators in the active condition, when
not engaged in a specific task, they fixated on resolving possible
areas of predicted high workload [22]. Because of this fixation,
the WTSA predictions did not match the actual results (Fig. 7).
Subjects using the active LOA spent significantly more time
attempting to achieve an optimal schedule based on computer
recommendations, which led to a loss of SA and subsequent
significantly higher queuing times.

As can be seen in Fig. 8, of all of the proposed WT com-
ponents, WTSA contributes significantly more than the other
elements under both low and high workload conditions. There
was no significant difference in the relative proportions of WTI,
WTQ, or WTSA across the different LOAs. The proportion of
WTSA is made up of 63% of all WTs in the low replanning
condition and 72% in the high replanning condition, showing a
trend of an increasing proportion of WTSA with an increasing
workload.

Fig. 9 shows how the predictions from (1) would change
for the high workload condition using the data from this
experiment if the proposed WTs are included, as in (3). By
including WTs in the prediction model, the upper bound of
the number of homogeneous independent unmanned vehicles
that a single controller can manage drops by 36%–67% based
on the effectiveness of the decision support. More importantly,
even under a high LOA represented by the superactive MBE
decision support, subjects still experienced WTs due to a loss

of SA that then led to a reduction in predicted capacity (36%).
This significant result demonstrates the importance of including
human decision-making limitations in an upper bound predic-
tion model, even for a highly automated system. In addition,
the increasing WTSA for the lowest three LOAs indicates that
operators were approaching their workload limit, culminating
in the cognitive saturation of operators under the active con-
dition, who were not effectively controlling the number they
were assigned (Fig. 9). In the active condition of the experi-
ment, the operators clearly struggled with the multiple-vehicle
management task driven primarily by WTSA (Figs. 7 and 8).
This relationship was captured in the upper limit predictions in
Fig. 9, which was not captured in the original FO (1) because
it does not capture inherent inefficiencies in human decision
making and action.

These results illustrate how critical it is to ensure that when
predicting an upper limit for operator capacity based on tempo-
ral attributes, the impact of specific automation decision support
designs on decision times and SA is critical. These results
also highlight the fact that any model that attempts to capture
temporal measurements of human–automation interaction is
both subject to the task and the context. The significance of
the level of replanning across the WTs demonstrates that one
external environmental variable can dramatically influence the
results; therefore, caution should be exercised in generalizing
specific results to other domains.

One additional source of WT that deserves further inves-
tigation not addressed in this paper is WT due to cognitive
reorientation (WTCR), which is a component of WTI. WTCR
is the time it takes for an operator to regain the correct men-
tal model, and the SA is needed to solve a problem once
recognized. Thus, WTCR is primarily a component of WTI
but could be related to WTSA in that operators with lower
WTSAs will likely have lower WTCR. WTCR represents a
switching cost that occurs when an operator is cognitively
engaged in one task but then must spend some period of time
reorienting to a new problem. This environment of switching
attention between multiple vehicles means that operators must
not only concentrate their attention on a primary task, such as
higher level mission planning, but also be prepared for alerts
for other events, such as a vehicle system failure. This need
to concentrate on one task yet maintain a level of attention for
alerts/information from other potential tasks causes operators to
have a conflict in mental information processing.

WTCR and the associated switching costs are very difficult to
capture as the performance-based simulations, such as the one
reported in this UAV study, cannot accurately and consistently
categorize WTCR. These difficulties have also been shown in
the multiple control of ground robots [9]. By using a software
that tracked the users’ cursor movements and activation of
control devices, we were able to determine when a subject was
engaged in a particular UAV, but we were unable to determine
at what point the cognitive reorientation occurred, which is a
subtle transition. This inability to partition WTCR from the
overall category of WTI could possibly be addressed through
some psychophysiologic measure or perhaps a more carefully
crafted scenario. This area deserves more attention because it
is unclear how much WTCR contributes to the overall WTs
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and how technological interventions such as intelligent decision
support could possibly mitigate this and other WTs.

VII. CONCLUSION

This paper extends a previous work attempting to predict
the number of homogeneous and independent unmanned ve-
hicles that a single operator can control. We propose that any
predictive model of operator capacity that includes human-in-
the-loop remote interaction should include various sources of
WTs which include WT due to human–computer interactions
(including cognitive reorientation), WTQ, and WTSA. By us-
ing the data from a simulation examining control of multiple
homogeneous and independent UAVs, capacity predictions that
included these sources of delay dropped by up to 67%, with a
loss of SA as the primary source of WT delays. Furthermore,
this paper demonstrates that both interface design components,
as well as the level of decision support automation, can be a
significant contributor to the overall WTs. Moreover, even in a
highly automated MBE system which should alleviate queuing
and ITs, this paper demonstrated that operator capacity is still
affected by WTSA, causing a 36% decrease over the capacity
model with no WT. Further work is needed to more accurately
capture the cognitive reorientation times which represent a
switching cost as well as loss of WTSAs.
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